প্রোজেক্ট ইউলার প্রবলেম # 12












                                                         

 Problem link https://projecteuler.net/problem=12 


Highly divisible triangular number

Problem 12

The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
Let us list the factors of the first seven triangle numbers:
 1: 1
 3: 1,3
 6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28
We can see that 28 is the first triangle number to have over five divisors.
What is the value of the first triangle number to have over five hundred divisors?

Solution :

#include<stdio.h>
int main()
{
int sum=0,counter=1,i,num;
while(1){
sum=sum+counter;
counter++; // generate triangle number
num=0;
i=1;
while(i*i<=sum){
if(sum%i==0){
num=num+2;
}
i++;
}
if(num>=500)
break;
}
printf("%d",sum);
} // end main